For $\bu_\infty\neq\bzero$, what is the asymptotic behavior of $\bu$ at large distances?
$B$
$\bu^*$
$\bu_\infty$
Asymptotic behavior of the velocity
Theorem (Babenko, 1970)
If $\bu$ is a physically reasonable solution, then
$$\bu(\bx)=\bu_{\infty}-\left(\sqrt{8\pi}F_{1}r^{-1/2}+O(r^{-1})\right)\e^{-r\left(1-\cos\theta\right)}$$
$$\quad\quad{}+2F_1\frac{\be_r}{r}+2F_2\frac{\be_\theta}{r}+O(r^{-1-\varepsilon})$$
where $\bF\in\mathbb{R}^{2}$ is the net force acting on the body.
$\bu\sim r^{-1/2} + O(r^{-1})$
$\bu\sim r^{-1} + O(r^{-1-\varepsilon})$
Asymptotic behavior of the vorticity
Theorem (Babenko, 1970)
If $\bu$ is a physically reasonable solution, then
$$\omega(\bx)=-\sqrt{8\pi}F_{1}\sin\theta\,r^{-1/2}\e^{-r\left(1-\cos\theta\right)}$$
$$\quad\quad\quad{}+O\bigl(r^{-3/2}\e^{-\mu r\left(1-\cos\theta\right)}\bigr)$$
for any $\mu\in(0,1)$.
If $\bu$ is a physically reasonable solution, then
$$\omega(\bx)=r^{F_1(1-\cos\theta)+F_2\sin\theta}r^{-1/2}\left[\mu(\theta)+O(r^{-\varepsilon})\right]\e^{-r\left(1-\cos\theta\right)}$$
where $\mu$ is a $2\pi$-periodic Hölder continuous function.
Idea of the proof
The correct linearization for this problem is not around $\bu=\bu_\infty$ but around the harmonic function $$\bu_\infty+F_1\frac{\be_r}{r}+F_2\frac{\be_\theta}{r}\,.$$
The proof use an explicit change of variable to analyze the corresponding linear system.