Princeton University
October 6, 2016
| $n=2$ | $n=3$ | |||||
| $\bF\neq\bzero$ | $\bF=\bzero$ | $\bF\neq\bzero$ | $\bF=\bzero$ | |||
| Decay for $\bF\neq\bzero$ | $\color{red}{|\bx|^{-1/2}}$ | $\color{yellow}{|\bx|^{-1}}$ | ||||
| Stokes solutions | $\color{red}{\log|\bx|}$ | $\!\!\color{yellow}{|\bx|^{-1}}$ | $\color{yellow}{|\bx|^{-1}}$ | $\color{green}{|\bx|^{-2}}$ | ||
| Navier–Stokes solutions | $\color{red}{|\bx|^{-1/3}}$ | $\color{red}{|\bx|^{-1/3}}$ | $\color{yellow}{|\bx|^{-1}}$ | $\color{green}{|\bx|^{-2}}$ | ||
| Asymptotic behavior | single wake | double wake, spirals,...? | Landau solution | Stokes solution | ||
The linear equations dominate at infinity, so the problem is easy by a fixed point argument.
Compatibility conditions corresponding to the net force lifted by the Landau solution (Korolev & Šverák, 2011).
Three compatibility conditions (torque,...) cancelled by symmetries or reduced by an harmonic solution (Guillod, 2015).
Numerical solutions decaying like $|\bx|^{-1/3}$ whish is astonishing in view of the three-dimensional case (Guillod, 2015).
Asymptotic expansion decaying like $|\bx|^{-1/3}$ and validations by numerical simulations (Guillod & Wittwer, 2015a).
$$u(r,\theta) \quad\text{for}\quad \varphi(z)=\mathrm{e}^{-z^2}$$
$$r^q u(r,\theta) \quad\text{for}\quad \varphi(z)=\mathrm{e}^{-z^2}$$
The second order $\boldsymbol{U}_\bF^{(2)}$ is explicit and decays like $|\bx|^{-2/3}$ at infinity
$$|\bx|^{1/3} \left| \boldsymbol{U}_\bF(\bx) + \boldsymbol{U}_\bF^{(2)}(\bx) \right|$$
$$\bu \sim |\bx|^{-1/3}$$
$$\bu \sim |\bx|^{-1}$$
Guillod J. & Wittwer P. 2015a
Asymptotic behaviour
of solutions to the stationary Navier–Stokes equations in two-dimensional exterior domains with zero velocity at infinity.
Math. Mod. Meth. Appl. S.
Guillod J. & Wittwer P. 2015b
Generalized scale-invariant solutions
to the two-dimensional stationary Navier–Stokes equations. SIAM J. Math. Anal.
Guillod J. 2015
Steady solutions of the Navier–Stokes equations in the plane.
arXiv:1511.03938