Stationary Navier–Stokes equations
in two dimensions

velocity field

Julien Guillod

Université Paris Diderot

9 juin 2017

vorticity

Description of the problem

  • Stationary incompressible Navier–Stokes equations $$-\Delta\bu+\bnabla p + \bu\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$ in $\mathbb{R}^n$ with $n=2,3$ and for a given forcing term $\bff$
  • Boundary condition at infinity $$\lim_{|\bx|\to\infty}\bu=\bu_\infty$$ for a given $\bu_\infty\in\mathbb{R}^n$
Fundamental properties
  1. a priori bound on the enstrophy
    ↳ topological methods
  2. invariance by a scaling symmetry
    ↳ perturbative methods

Topological methods

A priori bound on the enstrophy

$$\int_{\mathbb{R}^n} \bnabla\bu:\bnabla\bu + \underbrace{\int_{\mathbb{R}^n} (\bu\bcdot\bnabla\bu)\bcdot\bu}_{=\,0} = \int_{\mathbb{R}^n} \bff\bcdot\bu$$ $$\implies \Vert\bnabla\bu\Vert_{L^2}^2 = \langle\bff,\bu\rangle_{L^2}$$

Formal a priori bound
If $\bff$ satisfies $$|\langle\bff,\bu\rangle_{L^2}| \leq C \Vert\bnabla\bu\Vert_{L^2}$$ for some $C>0$, then $$\Vert\bnabla\bu\Vert_{L^2} \leq C$$

Weak solutions

Natural space
$$\dot{H}^1_{\sigma} = \bigl\{\bu \in \dot{H}^1: \bnabla\bcdot\bu=0 \bigr\}$$
Definition (weak solutions)
A vector field $\bu∶\mathbb{R}^n\to\mathbb{R}^n$ is called a weak solution if
  1. $\bu\in\dot{H}^1_{\sigma}$
  2. $$\bigl\langle\bnabla\bu,\bnabla\bphi\bigr\rangle_{L^{2}}+\bigl\langle\bu\bcdot\bnabla\bu,\bphi\bigr\rangle_{L^{2}}=\bigl\langle\bff,\bphi\bigr\rangle_{L^{2}}$$

    $$\forall\bphi\in C^\infty_{0,\sigma}=\bigl\{\bphi\in C^{\infty}_0: \bnabla\bcdot\bphi=0 \bigr\}$$

Existence of weak solutions in $\mathbb{R}^3$

Theorem (Leray, 1933)
If there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$ then for any $\bu_\infty\in\mathbb{R}^3$ there exists a weak solution $\bu$ in $\mathbb{R}^3$ such that $$\int_{S^2}|\bu-\bu_\infty|^2 = O\left(\frac{1}{|\bx|}\right).$$
Remark
Similar result in three-dimensional exterior domains with Lipshitz boundary.

Existence of weak solutions in $\mathbb{R}^2$

Theorem (Guillod & Wittwer, 2017)
If there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$ then for any $\bmu\in\mathbb{R}^2$ there exists a weak solution $\bu$ in $\mathbb{R}^2$ such that $$\textstyle\int_{B_1}\bu=\bmu.$$
Remark
In two-dimensional exterior domains $\Omega\neq\mathbb{R}^2$, the existence of weak solutions was obtained by Leray (1933). In this case the parameterization of the weak solution by some $\bmu\in\mathbb{R}^2$ is open.

Strategy of proof

Method of exhaustion
  1. Find a large enough Hilbert subspace $\mathcal{H}\subset\dot{H}^1_\sigma$ such that $$\mathcal{H}\subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$ ↳ Hardy inequality
  2. Construct a weak solution $\bu_k=\bu_{\infty,1} + \bv_k$ in the ball $B_k$ such that the sequence $(v_k)_{k\geq1}$ is uniformly bounded in $\mathcal{H}$
    a priori bound in bounded domains
    ↳ compactness of the nonlinearity in bounded domains
    ↳ Leray–Schauder fixed point theorem
  3. Pass to the limit in the weak formulation
    ↳ local compactness property of $\mathcal{H}$

Step 1: Hardy inequality in $\mathbb{R}^3$

Hardy inequality (Hardy, 1934)
For any $\bu\in \dot{H}^1_\sigma$, there exists a unique $\bu_\infty\in\mathbb{R}^3$ such that $$\left\Vert \frac{\bu-\bu_\infty}{|\bx|} \right\Vert_{L^2} \leq 2 \Vert \bnabla\bu \Vert_{L^2}$$ and moreover $\bu-\bu_\infty\in L^6$ and $$\int_{S^2}|\bu-\bu_\infty|^2 = O\left(\frac{1}{|\bx|}\right).$$
Hilbert subspace
The following subspace of $\dot{H}^1_\sigma$ has a nondegenerate norm: $$\mathcal{H} = \bigl\{\bu\in\dot{H}^1_\sigma : \bu_\infty=\bzero\bigr\} = \dot{H}^1_\sigma \cap L^6 \subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$

Step 1: Hardy inequality in $\mathbb{R}^2$

Hardy inequality (Guillod & Wittwer, 2017)
There exists a constant $C>$ such that for any $\bu\in \dot{H}^1_\sigma$, $$\left\Vert \frac{\bu-\bmu}{\langle\bx\rangle\langle\log\langle\bx\rangle\rangle} \right\Vert_{L^2} \leq C \Vert \bnabla\bu \Vert_{L^2}$$ where $\bmu\in\mathbb{R}^2$ is the mean of $\bu$ on the ball of radius one $$\bmu = \frac{1}{|B_1|}\int_{B_1} \bu.$$
Hilbert subspace
The following subspace of $\dot{H}^1_\sigma$ has a nondegenerate norm: $$\mathcal{H} = \bigl\{\bu\in\dot{H}^1_\sigma : \bmu=\bzero\bigr\} \subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$

Remark on the hypothesis on $\bff$

Corollary in $\mathbb{R}^3$
In $\mathbb{R}^3$ if $|\bx|\;\bff \in L^2$, then there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$
Corollary in $\mathbb{R}^2$
In $\mathbb{R}^2$ if $\langle\bx\rangle\langle\log\langle\bx\rangle\rangle\;\bff \in L^2$ and $$\int_{\mathbb{R}^2}\bff=\bzero$$ then there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$

Step 2: weak solution in $B_k$

  • search the solution as $\bu_k=\bu_{\infty,1} + \bv_k$ with $\bv_k \in \mathcal{H}$
  • choice of boundary condition $$\bv_k|_{\partial B_k}=\bc_k$$ where $\bc_k=\bzero$ for $n=3$ and $\bc_k\in\mathbb{R}^2$ is used to ensure that $\int_{B_1}\bv_k=\bzero$ when $n=2$
  • define $\bw_k=\bv_k-\bc_k$ so that $\bw_k\in\dot{H}^1_{0,\sigma}=\dot{H}^1_\sigma \cap \dot{H}^1_0$
  • rewrite the weak formulation as $\bw_k=T\bw_k$ on $\dot{H}^1_{0,\sigma}$
  • $T$ is compact since $\dot{H}^1_0 \subset H^1 \Subset L^4$ in bounded domains
  • a priori bound on the solutions of $\bw_k=\lambda T\bw_k$ for $\lambda\in[0,1]$ $$\Vert\bnabla\bw_k\Vert_{L^2}^2 \leq \lambda|\langle\bff,\bw_k\rangle_{L^2}| \leq C \Vert\bnabla\bw_k\Vert_{L^2}$$
  • apply the fixed point theorem of Leray–Schauder

Step 3: passing to the limit

  • since $(\bv_k)_{k\geq1}$is uniformly bounded in $\mathcal{H}$, there exists a subsequence converging to $\bv$ weakly in $\mathcal{H}$ and strongly in $L^4_{\mathrm{loc}}$
  • let $\bphi\in C^{\infty}_{0,\sigma}$ and $m$ such that $\mathrm{supp}(\bphi)\subset B_m$
  • since $\bu_k = \bu_{\infty,1} + \bv_k$ is a weak solution in $B_k$, for any $k\geq m$ $$\bigl\langle\bnabla\bv_{k},\bnabla\bphi\bigr\rangle_{L^{2}} + \bigl\langle(\bu_{\infty,1}+\bv_{k})\bcdot\bnabla\bv_{k},\bphi\bigr\rangle_{L^{2}} = \bigl\langle\bff,\bphi\bigr\rangle_{L^{2}}$$
  • in the limit $k\to\infty$ $$\bigl\langle\bnabla\bv,\bnabla\bphi\bigr\rangle_{L^{2}} + \bigl\langle(\bu_{\infty,1}+\bv)\bcdot\bnabla\bv,\bphi\bigr\rangle_{L^{2}} = \bigl\langle\bff,\bphi\bigr\rangle_{L^{2}}$$ so $\bu = \bu_\infty + \bv$ is a weak solution in $\mathbb{R}^3$
  • moreover, by weak convergence $$\Vert\bnabla\bu\Vert_{L^2} = \Vert\bnabla\bv\Vert_{L^2} \leq \liminf_{k\to\infty}\Vert\bnabla\bv_k\Vert_{L^2}\leq C$$

Limit at infinity in $\mathbb{R}^2$

Theorem (Gilbarg & Weinberger, 1978)
If $\bu$ is a weak solution in $\mathbb{R}^2$, then either there exists $\bu_0\in\mathbb{R^2}$ such that $$\lim_{\left|\bx\right|\to\infty}\int_{S^{1}}\left|\bu-\bu_{0}\right|^{2}=0$$ or $$\lim_{\left|\bx\right|\to\infty}\int_{S^{1}}\left|\bu\right|^{2}=\infty$$
Consequence
The limit at infinity of the weak solutions
is widely open in two dimensions.

Perturbative methods

Scaling symmetry

Scaling symmetry
$$\begin{align} \bu(\bx) &\mapsto \bu_\lambda(\bx) = \lambda \bu(\lambda\bx)\\ p(\bx) &\mapsto p_\lambda(\bx) = \lambda^2 p(\lambda\bx)\\ \bff(\bx) &\mapsto \bff_\lambda(\bx) = \lambda^3 \bff(\lambda\bx)\\ \end{align}$$
Remark
The scaling symmetry describes the link
between the linearity and the nonlinearity.

Criticality

Criticality
  • subcritical space
    ↳ linearity dominant
  • critical space
    ↳ linearity and nonlinearity balanced
  • supercritical space
    ↳ nonlinearity dominant
Criticality of a Banach space $X$
$$\Vert \bu_\lambda \Vert_X = \lambda^{1-\alpha} \Vert\bu\Vert_X$$
  • $\alpha<1$ : subcritical locally and supercritical at infinity
  • $\alpha=1$ : critical both locally and at infinity
  • $\alpha>1$ : supercritical locally and subcritical at infinity

Examples of function spaces

Function space for weak solutions
$\dot{H}^1_\sigma$ has $\alpha=\frac{n}{2}-1$, so for $n=2,3$ it is
  • subcritical locally (linearity locally dominant)
    ↳ no regularity problem
  • supercritical at infinity (nonlinearity dominant at infinity)
    a priori no boostrap from weak solutions
Function space for perturbative solutions
$$E_\alpha = \bigl\{ \bu\in L^1_{\mathrm{loc}}: {\textstyle\sup_{\bx\in\mathbb R^n}} (1+|\bx|^{\alpha}) |\bu(\bx)| <\infty \bigr\}$$ is subcritical locally and
  • subcritical at infinity if $\alpha>1$
  • supercritical at infinity if $\alpha<1$

Perturbation method

when $\bu_\infty\neq\bzero$

Linearization around $\bu_\infty\neq\bzero$ (Oseen equations)
$$-\Delta\bu+\bnabla p + \bu_\infty\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$
Theorem (Finn, 1965; Babenko, 1973; Galdi, 1992)
If $\bu$ is a weak solution in $\mathbb{R}^3$ with $\bu_\infty\neq\bzero$, then $\bu$ behaves at infinity like the Oseen fundamental solution.
Theorem (Finn & Smith, 1967; Galdi, 1992)
Let $q\in(1,6/5]$ and $\bu_\infty\neq\bzero$. If $\bff\in L^q$ is small enough, then there exists a solution $\bu$ behaving at infinity like the Oseen fundamental solution.

Net force and decay

when $\bu_\infty=\bzero$

  • Navier–Stokes equivalent to $\bnabla\bcdot\mathbf{T}=\bff$ where $$\mathbf{T}=\bnabla\bu+\left(\bnabla\bu\right)^{T}-p\,\boldsymbol{1}-\bu\otimes\bu$$
  • Invariant quantity $$\int_{B_r}\bff = \int_{\partial B_r}\!\mathbf{T}\bcdot n$$
  • Net force $$\bF = \int_{\mathbb{R}^n}\bff = \lim_{r\to\infty}\int_{\partial B_r}\!\mathbf{T}\bcdot\bn = \lim_{|\bx|\to\infty}|\bx|^{n-1}\int_{S^{n-1}}\!\mathbf{T}\bcdot\bn$$
Consequence
If $\bu\in E_\alpha$ with $\alpha>\frac{n-1}{2}$, then $\bF=\bzero$.

Perturbative solutions in $\mathbb{R}^3$

when $\bu_\infty=\bzero$

Landau solution
For $\bF\in\mathbb{R}^3$, the Landau solution $\bU_\bF$ is a scale-invariant solution of the Navier–Stokes equations with $\bff = \bF \delta(\bx)$.
Theorem (Korolev & Šverák, 2011)
Let $\varepsilon\in(0,1)$. If $\bff\in E_{3+\varepsilon}$ is small enough, then there exists a unique solution $\bu\in E_1$ such that $$\bu = \bU_\bF + O\Biggl(\frac{1}{|\bx|^{1+\varepsilon}}\Biggr)$$ where $\bF = \int_{\mathbb{R}^3}\bff$. Moreover this solution is unique the among weak solutions having $\bu_\infty=\bzero$.

Perturbative solutions in $\mathbb{R}^2$

when $\bu_\infty=\bzero$

Theorem (Guillod, 2015c; Guillod & Wittwer, 2017)
Let $\varepsilon\in(0,1)$. If $\bff\in E_{3+\varepsilon}$ is small enough with $\bF=\bzero$ and belongs to a manifold of codimension two, then there exists a unique solution $\bu\in E_1$ such that $$\bu = -\frac{M}{4\pi}\frac{\bx^\perp}{|\bx|^2} + O\Biggl(\frac{1}{|\bx|^{1+\varepsilon}}\Biggr)$$ where $M = \int_{\mathbb{R}^2}\bx\bwedge\bff$ is the net torque. If $\bff$ is not in this manifold of codimension two, then the perturbation method fails in $E_1$.
Moreover, if $M=0$, this solution is unique among the weak solutions having the same $\bmu=\int_{B_1} \bu$.

Conjectures on the
existence of solutions
in $\mathbb{R}^2$ with $\bu_\infty=\bzero$

Open problems

Open problems when $\bF\neq\bzero$
  • existence of weak solutions
  • existence of perturbative solutions with $\bu_\infty=\bzero$
Open problems when $\bF=\bzero$
  • existence of weak solutions with $\bu_\infty=\bzero$
  • existence of perturbative solutions if $\bff$ do not satisfies the two compatibility conditions
Question
What is happening without any compatibility conditions on $\bff$, even under smallness assumptions on $\bff$?

Asymptotic expansion when $\bF\neq\bzero$

Theorem (Guillod & Wittwer, 2015a)
For any $\bF\neq\bzero$, there exists a solution $\bU_\bF\in E_{1/3}$ with some $\bff\in E_{7/3}$ having net force $\bF$.

$$\bU_\bF \sim |\bx|^{-1/3}$$

$$\bU_\bF \sim |\bx|^{-2/3}$$

asymptotique expansion up to second order

Numerical simulations when $\bF\neq\bzero$

  • Take some $\bff$ having compact support and $\bF\neq\bzero$
  • Truncate the domain to a ball of radius $r=10^5$
  • Add zero boundary condition on $\partial B_r$: $\bu|_{\partial B_r}=\bzero$
$|\bx|^{1/3}\,|\bu|$
simulations avec conditions au bord de non-glissement
$|\bx|\,|\bu-\bU_\bF|$
difference between numerical solution and asymptote

Conjecture when $\bF\neq\bzero$

Conjecture (Guillod & Wittwer, 2015a)
For a large class of small $\bff$ with $\bF\neq\bzero$, there exists a solutions to the Navier–Stokes equations such that $$\bu = \bU_\bF + O\Biggl(\frac{1}{|\bx|}\Biggr).$$
Main problem
How to invert the linear system $$-\Delta\bu+\bnabla p+\bU_\bF\bcdot\bnabla\bu+\bu\bcdot\bnabla\bU_\bF=\bff \qquad \bnabla\bcdot\bu=\bzero$$ since $\bU_\bF$ decays only like $|\bx|^{-1/3}$?

Generalized scale-invariant solutions

Definition
Combination of the scaling and rotational symmetries leads to the concept of scale-invariant solutions up to a rotation: $$e^\lambda\bu(e^\lambda\bx) = \mathbf{R}^{-1}_{\eta\lambda}\bu(\mathbf{R}_{\eta\lambda}\bx)$$ i.e. $$\bu(r,\theta) = \frac{\bphi(\theta + \eta \log r)}{r}$$
generalized scale-invariant generalized scale-invariant

Existence and uniqueness

of scale-invariant solutions up to a rotation

Theorem (Guillod & Wittwer, 2015b)
For $\eta\in\mathbb{R}$ and $k\in\mathbb{N}^*$ satisfying $$\frac{4}{1+\eta^2}\leq k^2,$$ there exists a unique scale-invariant solution up to a rotation of the Navier–Stokes equations in $\mathbb{R}^2\setminus\{\bzero\}$ which is $k$-fold symmetric.

Generalized scale-invariant solutions

for $\eta=\,$ 0.0

$k=2$ generalized Hamel for k=2
$k=3$ generalized Hamel for k=3
$k=4$ generalized Hamel for k=4

Numerical simulations when $\bF=\bzero$

for $M=\,$ 0.0$\pi$ and $A=\,$ 0.0$\pi$

decay of the velocity for zero net force virtual pointer
$A$
$M$
$\bu\sim|\bx|^-$0.00
velocity for zero net force
$|\bx|$0.00$\quad\;|\bu|$

Summary

$n=2$ $n=3$
$\bF\neq\bzero$ $\bF=\bzero$ $\bF\neq\bzero$ $\bF=\bzero$
Stokes solutions $\log|\bx|$ $|\bx|^{-1}$ $|\bx|^{-1}$ $|\bx|^{-2}$
Navier–Stokes solutions $\color{red}{|\bx|^{-1/3}}$ $\color{red}{|\bx|^{-1/3}}$ $\color{yellow}{|\bx|^{-1}}$ $\color{yellow}{|\bx|^{-2}}$
Asymptotic behavior single wake? double wake, spirals,...? Landau solution Stokes solution
Conclusion
In $\mathbb{R}^2$ the nonlinearity seems to “help” for the existence!