Nonuniqueness numerical results (G. & Šverák, 2017)
There exists two different smooth solutions in $L^\infty(0,T;L^{3,\infty})$ with the same scale-invariant initial data $\bu_0\in L^{3,\infty}\subset BMO^{-1}$.
Theorem (G. & Šverák, 2017, inspired by Jia & Šverák, 2015)
Under a spectral assumption verified numerically, there exists two different smooth Leray–Hopf solutions with the same compactly supported initial data $\bu_{0}\in C^{\infty}(\mathbb{R}^{3}\setminus\{\bzero\})$
with $\bu_{0}(\bx)=O(\left|\bx\right|^{-1})$
near the origin. Moreover these two solutions belongs to $L^{p}(0,T;L^{q})$
for any $$\frac{2}{p}+\frac{3}{q}>1\qquad\text{and}\qquad q\geq2\,.$$