On the nonuniqueness of
the Navier–Stokes equations

velocity field

Julien Guillod

Sorbonne Université

June 21, 2018

Joint work with
Vladimír Šverák

vorticity

1. Introduction

Navier–Stokes equations

$$\begin{cases} \partial_{t}\bu+\bu\bcdot\bnabla\bu=\Delta\bu-\bnabla p\\ \bnabla\bcdot\bu=0\\ \bu(0)=\bu_{0} \end{cases} \quad \text{in} \quad \mathbb{R}^3\tag{NS}$$
Main question
Well-posedness of the Cauchy problem (existence, uniqueness, regularity)
Main two methods
  • energy method (a priori bounds)
  • perturbation method (Banach fixed point)

Energy method

  • A priori bound on the energy:$$\left\Vert \bu(t)\right\Vert _{L^{2}(\mathbb{R}^{3})}^{2}+2\int_{0}^{t}\left\Vert \bnabla\bu(\tau)\right\Vert _{L^{2}(\mathbb{R}^{3})}^{2}\rd\tau\leq\left\Vert \bu_0\right\Vert _{L^{2}(\mathbb{R}^{3})}^{2}$$
  • Leray–Hopf solution on $(0,T)$: $$\bu \in L^{\infty}(0,T;L^{2}(\mathbb{R}^{3}))\cap L^{2}(0,T;\dot{H}^{1}(\mathbb{R}^{3}))$$ satisfying (NS) as a distribution and the local energy inequality.
Theorem (Leray, 1934)
For any $\bu_0\in L^2(\mathbb{R}^3)$, existence of a global Leray–Hopf solution ($T=\infty$). The regularity and uniqueness of these weak solutions are open.

Perturbation method

  • Inversion of the linearity on the nonlinearity: $$\bu(t)=\e^{\Delta t}\bu_0+\int_{0}^{t}\e^{\Delta(t-\tau)}\mathbb{P}\bigl(\bu(\tau)\bcdot\bnabla\bu(\tau)\bigr)\,\rd\tau$$
  • Mild solution in $X_T$: $$\bu \in X_T \quad\text{for some}\quad T>0$$ satisfying the above equation for all $t\in [0,T)$.
Question
In which function spaces a fixed point argument can be made for short time?

Criticality

  • Criticality:
    • subcritical spaces: linearity dominant (easy)
    • critical spaces: linearity and nonlinearity balanced
    • supercritical spaces: nonlinearity dominant (hard)
  • Scaling symmetry: $$\begin{aligned}\bu_{\lambda}(t,\bx) & =\lambda\bu(\lambda^{2}t,\lambda\bx)\\ p_{\lambda}(t,\bx) & =\lambda^{2}p(\lambda^{2}t,\lambda\bx)\\ \bu_{0\lambda}(\bx) & =\lambda\bu_{0}(\lambda\bx)\end{aligned}$$
  • Critical space:
    Banach space $X$ of functions $(0,\infty)\times\mathbb{R}^3\to\mathbb{R}^3$ such that $$\Vert\bu_\lambda\Vert_X = \Vert\bu\Vert_X$$
  • Critical spaces are a priori the largest ones where a fixed point argument is expected to close.

Critical spaces $L^{p}(0,T;L^{q}(\mathbb{R}^{3}))$

LpLq critical spaces
Theorem (Kato, 1984)
For $q\geq3$ and $\bu_0\in L^q(\mathbb{R}^3)$, existence of a local mild solution $\bu\in L^\infty(0,T;L^q(\mathbb{R}^3))$, which is global if $\bu_0$ is small enough.
Theorem (Prodi, 1959; Serrin, 1963; Ladyzhenskaya, 1967;
Escauriaza et al., 2003)
If $\bu\in L^{p}(0,T;L^{q}(\mathbb{R}^{3}))$ with $\frac{2}{p}+\frac{3}{q}\leq1$, then $\bu$ is smooth and unique on $(0,T)$.

Critical spaces $L^\infty(0,T;X)$

  • If $X$ is a Banach spaces of functions $\mathbb{R}^3\to\mathbb{R}^3$ such that $$\Vert\bu_{0\lambda}\Vert_X = \Vert\bu_0\Vert_X$$ then $L^\infty(0,T;X)$ is a critical space.
  • Two families: $$\begin{align*} X & = L^{3}(\mathbb{R}^{3}),\; \dot{H}^{1/2}(\mathbb{R}^{3}),\dots & \text{with}\quad\frac{1}{|\bx|} & \notin X\\ \overline{X} & =L^{3,\infty}(\mathbb{R}^{3}),\; BMO^{-1}(\mathbb{R}^3),\dots & \text{with}\quad\frac{1}{|\bx|} & \in \overline{X} \end{align*}$$
  • Hidden smallness condition in $X$ not in $\overline{X}$: $$\bu_{0\lambda}\big|_{B_R}\to0 \quad\text{as}\quad \lambda\to0 \quad\text{for any}\quad \bu_0\in X$$

Critical spaces $L^\infty(0,T;\overline{X})$

Theorem (Koch & Tataru, 2001)
For $\bu_0\in BMO^{-1}(\mathbb{R}^3)$, existence of a unique global solution provided $\bu_0$ is small enough in $BMO^{-1}(\mathbb{R}^3)$.
Intuition
  • For $\bu_0\in X$ : local in time for large data
    For $\bu_0\in X$ : global in time for small data
  • For $\bu_0\in \overline{X}$ : only for small data
    For $\bu_0\in \overline{X}$ : (supercritical regime from $t=0$)
Question on the nonperturbative regime
What is happening for large data in the spaces $\overline{X}$?

Scale-invariant solutions

  • Scale-invariant initial data: $$u_{0\lambda}=u_0 \quad\textit{i.e.}\quad u_0(\bx)=\frac{\varphi(\hat{\bx})}{|\bx|}$$
  • Scale-invariant solutions: $$u_{\lambda}=u \quad\textit{i.e.}\quad u(t,\bx)=\frac{1}{t^{1/2}}U\Bigl(\frac{\bx}{t^{1/2}}\Bigr)$$
  • Ansatz into (NS):
    $$\begin{cases} \Delta\bU+\frac{\bx}{2}\bcdot\bnabla\bU+\frac{1}{2}\bU-\bU\bcdot\bnabla\bU-\bnabla P=\bzero\\ \bnabla\bcdot\bU=0\\ \bU(\bx)=\bu_{0}(\bx)+o(\left|\bx\right|^{-1})\quad\text{as}\quad\left|\bx\right|\to\infty \end{cases}\tag{NS-self}$$
  • Short form: $$\text{(NS-self)} \quad\Longleftrightarrow\quad F(\bU)=\bzero$$

Existence of scale-invariant solutions

Theorem (Jia & Šverák, 2013)
For $\bu_0\in C^\infty(\mathbb{R}^3\setminus\{\bzero\})$ scale-invariant, there exists al least one scale-invariant solution $\bu\in C^\infty((0,\infty)\times\mathbb{R}^3)$. Moreover the profile $\bU\in C^\infty(\mathbb{R}^3)$ satisfies $$\bigl|\bU(\bx)-\e^{\Delta}\bu_{0}(\bx)\bigr|\leq\frac{C(\bu_{0})}{\left(1+\left|\bx\right|\right)^{3}}$$
Intuition for the proof
Since (NS-self) is elliptic, use Leray–Schauder as for proving the existence of steady solutions to the Navier–Stokes equations. Therefore, the solution is a priori unique only for small $\bu_0$.

2. Results

Aim and Strategy

Aim
Find a self-similar $\bu_0$ such that the Navier–Stokes equations admit at least two different self-similar solutions.
Strategy
  1. Work within the class of axisymmetric solutions (with swirl)
  2. Choose a self-similar initial data with pure swirl: $$\bu_0(r,z) = \sigma(r^{2}+z^{2})^{-1/2}f(z/r)\,\be_{\theta}$$
  3. Find a numerical solution $\bU_\sigma$ by continuation in $\sigma\geq0$
  4. Numerically compute the spectrum of $DF(\bU_\sigma)$ for each $\sigma\geq0$
  5. Resolve the solutions possibly bifurcating form $\bU_\sigma$

Numerical solution $\bU_\sigma$

solution Usigma

Spectrum of $DF(\bU_\sigma)$

spectrum

Bifurcation

$\sigma=\,$0

Nonuniqueness in $L^\infty(0,T,L^{3,\infty}(\mathbb{R}^3))$

Spectral numerical results
On the range $\sigma\in[0,500]$, there exists a unique axisymmetric self-similar solution $\bU_\sigma$ that is symmetric with respect to the plane $z=0$. The spectrum of the linearization $DF(\bU_\sigma)$ has the form $$\sigma(DF(\bU_\sigma))\subset\bigl\{\lambda\in\mathbb{C}\,:\:\mathrm{Re}\,\lambda>\delta\bigr\}\cup\bigl\{\lambda_{\sigma}\bigr\}\,,\tag{$*$}$$ for some $\delta>0$ and there exists $\sigma_{0}\approx292$ such that $\lambda_{\sigma}>0$ for $\sigma<\sigma_{0}$, $\lambda_{\sigma}=0$ for $\sigma=\sigma_{0}$, and $\lambda_{\sigma}<0$ for $\sigma>\sigma_{0}$.
Nonuniqueness numerical results
There exists two different smooth solutions in $L^\infty(0,T;L^{3,\infty}(\mathbb{R}^3))$ with the same scale-invariant initial data $\bu_0\in L^{3,\infty}(\mathbb{R}^3)$.

Nonuniqueness of Leray–Hopf solutions

Theorem (adapted from Jia & Šverák, 2015)
Under the spectral assumption ($*$), there exists two different smooth Leray–Hopf solutions with the same compactly supported initial data $\bu_{0}\in C^{\infty}(\mathbb{R}^{3}\setminus\{\bzero\})$ with $\bu_{0}(\bx)=O(\left|\bx\right|^{-1})$ near the origin. Moreover these two solutions belongs to $L^{p}(0,T;L^{q}(\mathbb{R}^{3}))$ for any $$\frac{2}{p}+\frac{3}{q}>1\qquad\text{and}\qquad q\geq2\,.$$
Intuition for the proof
  • Truncate the initial data to have $\bu_0\in L^2(\mathbb{R}^3)$.
  • Use the spectral assumption ($*$) to construct a correction.
  • Use Lemarié-Rieusset to prove that the solution is Leray–Hopf.

Nonuniqueness of weak solutions

Theorem (Buckmaster & Vicol, 2017)
There exists $\beta>0$, such that for any nonnegative smooth function $e:[0,T]\to\mathbb{R}$, there exists a weak solution $\bu\in C^0(0,T;H^\beta(\mathbb{T}^3))$ of (NS) such that $$\left\Vert \bu(t)\right\Vert _{L^{2}(\mathbb{T}^{3})}^{2} = e(t).$$
Remarks
  • Not known if these weak solutions belong to $L^2(0,T;H^1(\mathbb{T}^3))$.
  • These weak solutions are probably not Leray–Hopf solutions.
  • Nonuniqueness in a bigger class of solutions than the class where existence is known.

Summary

LpLq critical spaces
Corollary (under ($*$))
The Navier-Stokes equations are ill-posed locally in time for either:
  • $\bu_0\in L^q(\mathbb{R}^3)$ with $2\leq q <3$
  • $\bu_0\in L^{3,\infty}(\mathbb{R}^3)\subset BMO^{-1}(\mathbb{R}^3)$
even under the additional constraint that the solution has to verify the (local) energy equality.

So, the known perturbation results are essentially optimal.

3. Speculations

Examples

Hypothesis
Is the scaling governing the well-posedness?
Examples on positive side
  • Onsager conjecture for 3D Euler (Isett, 2016)
  • Ill-posedness for harmonic map heat flow (Germain et al., 2017)
Examples on negative side
  • Global well-posedness for Burgers (Kiselev & Ladyzhenskaya, 1957)
  • Global well-posedness for Template matching (Plecháč & Šverák, 2003)

Plausible scenario

speculation

Finite-time blow-up by generalized
scale-invariant solutions?

Theorem (Tsai, 1998)
There is no reasonable scale-invariant solutions blowing-up in finite time.
Main idea
Combine the rotational and scaling symmetries: $$u(t,\bx) = \e^{\lambda}\e^{-\lambda\bL}\bu(\e^{2\lambda}t,\e^{\lambda}\e^{\lambda\bL}\bx)$$ where $\bL\in \mathfrak{so}(3)$ i.e. $$u(t,\bx) = \frac{\e^{\frac{1}{2}\log(-t)\bL} }{(-t)^{1/2}} \bU\Bigl(\frac{\e^{-\frac{1}{2}\log(-t)\bL}\bx}{(-t)^{1/2}}\Bigr)$$
generalized scale-invariant generalized scale-invariant
steady solution in $\mathbb{R}^2\setminus\{\bzero\}$
(Guillod & Wittwer, 2015)