Change of variables for harmonic transport
Formally the equation
$$\Delta \omega - 2\bnabla\phi\bcdot\bnabla\omega = g$$
where
$$\bnabla\phi = \bnabla\bwedge\psi \,,\quad\quad \Delta\phi=\Delta\psi=0$$
is transformed into
$$\Delta a - a = h$$
with
$$\omega = a(\phi(\bx),\psi(\bx)) \, \e^{\phi(\bx)}, \quad\quad g=h(\bx)\,\e^{\phi(\bx)}\,|\bnabla\phi|^2$$