Theorem (Kato, 1984)
For $\bu_0\in L^3(\mathbb{R}^3)$, existence of a local mild solution $\bu\in L^\infty(0,T;L^3(\mathbb{R}^3))$, which is global if $\bu_0$ is small enough.
Theorem (Escauriaza, Seregin & Šverák, 2003)
If $\bu\in L^{\infty}(0,T;L^{3}(\mathbb{R}^{3}))$ is a Leray–Hopf solution, then $\bu$ is smooth and unique on $(0,T)$.
Theorem (Koch & Tataru, 2001)
For $\bu_0\in BMO^{-1}(\mathbb{R}^3)$, existence of a unique global solution provided $\bu_0$ is small enough in $BMO^{-1}(\mathbb{R}^3)$.