Linearization around $\bu_\infty\neq\bzero$ (Oseen equations)
$$-\Delta\bu+\bnabla p + \bu_\infty\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$
Theorem (Finn, 1965; Finn & Smith, 1967; Galdi, 1992)
For any $\bu_\infty\neq\bzero$, if $\bff\in L^1 \cap L^2$ is small enough, then there exists a solution $\bu$
behaving at infinity like the Oseen fundamental solution.
Theorem (Guillod & Wittwer, 2017)
In two dimensions, the vorticity $\omega=\bnabla\bwedge\bu$ does not behave like the Oseen fondamental solution.