

Velocity field at infinity:
$$\bu_\infty \in \mathbb{R}^n$$Net force:
$$\bF = \int_{\mathbb{R}^n} \bff \in \mathbb{R}^n$$$$\int_{\mathbb{R}^n} \bnabla\bu:\bnabla\bu + \underbrace{\int_{\mathbb{R}^n} (\bu\bcdot\bnabla\bu)\bcdot\bu}_{=\,0} = \int_{\mathbb{R}^n} \bff\bcdot\bu$$ $$\implies \Vert\bnabla\bu\Vert_{L^2}^2 = \langle\bff,\bu\rangle_{L^2}$$
$$\forall\bphi\in C^\infty_{0,\sigma}=\bigl\{\bphi\in C^{\infty}_0: \bnabla\bcdot\bphi=0 \bigr\}$$

$$\bU_{\!\bF} \sim |\bx|^{-1/3}$$
$$\bU_{\!\bF} \sim |\bx|^{-2/3}$$





| $n=2$ | $n=3$ | |||||
| $\bF\neq\bzero$ | $\bF=\bzero$ | $\bF\neq\bzero$ | $\bF=\bzero$ | |||
| Stokes solutions | $\log|\bx|$ | $|\bx|^{-1}$ | $|\bx|^{-1}$ | $|\bx|^{-2}$ | ||
| Navier–Stokes solutions | $\color{red}{|\bx|^{-1/3}}$ | $\color{red}{|\bx|^{-1/3}}$ | $\color{yellow}{|\bx|^{-1}}$ | $\color{green}{|\bx|^{-2}}$ | ||
| Asymptotic behavior | single wake? | double wake, spirals,...? | Landau solution | Stokes solution | ||