Stationary solutions of the Navier-Stokes
equations in the whole plane

Julien Guillod

logo SU INRIA

Description of the problem

  • Stationary incompressible Navier–Stokes equations $$-\Delta\bu+\bnabla p + \bu\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$ in $\mathbb{R}^n$ with $n=2,3$ and for a given forcing term $\bff$.
  • Boundary condition at infinity $$\lim_{|\bx|\to\infty}\bu=\bu_\infty$$ for a given $\bu_\infty\in\mathbb{R}^n$.
Fundamental properties
  1. a priori bound on the enstrophy
    ↳ topological methods
  2. invariance by a scaling symmetry
    ↳ perturbative methods

Physical situations

Velocity field at infinity:

$$\bu_\infty \in \mathbb{R}^n$$

Net force:

$$\bF = \int_{\mathbb{R}^n} \bff \in \mathbb{R}^n$$
$$\begin{align} \bu_\infty &\neq \bzero\\ \bF &\neq \bzero \end{align}$$
$$\begin{align} \bu_\infty &= \bzero\\ \bF &\neq \bzero \end{align}$$
$$\begin{align} \bu_\infty &= \bzero\\ \bF &= \bzero \end{align}$$

Topological methods

A priori bound on the enstrophy

$$\int_{\mathbb{R}^n} \bnabla\bu:\bnabla\bu + \underbrace{\int_{\mathbb{R}^n} (\bu\bcdot\bnabla\bu)\bcdot\bu}_{=\,0} = \int_{\mathbb{R}^n} \bff\bcdot\bu$$ $$\implies \Vert\bnabla\bu\Vert_{L^2}^2 = \langle\bff,\bu\rangle_{L^2}$$

Formal a priori bound
If $\bff$ satisfies $$|\langle\bff,\bu\rangle_{L^2}| \leq C \Vert\bnabla\bu\Vert_{L^2}$$ for some $C>0$, then $$\Vert\bnabla\bu\Vert_{L^2} \leq C\,.$$

Weak solutions

Natural space
$$\dot{H}^1_{\sigma} = \bigl\{\bu \in \dot{H}^1: \bnabla\bcdot\bu=0 \bigr\}$$
Definition (weak solutions)
A vector field $\bu∶\mathbb{R}^n\to\mathbb{R}^n$ is called a weak solution if
  1. $\bu\in\dot{H}^1_{\sigma}$
  2. $$\bigl\langle\bnabla\bu,\bnabla\bphi\bigr\rangle_{L^{2}}+\bigl\langle\bu\bcdot\bnabla\bu,\bphi\bigr\rangle_{L^{2}}=\bigl\langle\bff,\bphi\bigr\rangle_{L^{2}}$$

    $$\forall\bphi\in C^\infty_{0,\sigma}=\bigl\{\bphi\in C^{\infty}_0: \bnabla\bcdot\bphi=0 \bigr\}$$

Existence of weak solutions in $\mathbb{R}^3$

Theorem (Leray, 1933)
If there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$ then for any $\bu_\infty\in\mathbb{R}^3$ there exists a weak solution $\bu$ in $\mathbb{R}^3$ such that $$\int_{S^2}|\bu-\bu_\infty|^2 = O\left(\frac{1}{|\bx|}\right).$$
Remark
Similar result in three-dimensional exterior domains with Lipshitz boundary.

Existence of weak solutions in $\mathbb{R}^2$

Theorem (Guillod & Wittwer, 2018)
If there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$ then for any $\bmu\in\mathbb{R}^2$ there exists a weak solution $\bu$ in $\mathbb{R}^2$ such that $$\textstyle\int_{B_1}\bu=\bmu.$$
Remark
In two-dimensional exterior domains $\Omega\neq\mathbb{R}^2$, the existence of weak solutions was obtained by Leray (1933). In this case the parameterization of the weak solution by some $\bmu\in\mathbb{R}^2$ is open.

Strategy of proof

Method of exhaustion
  1. Find a large enough Hilbert subspace $\mathcal{H}\subset\dot{H}^1_\sigma$ such that $$\mathcal{H}\subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$ ↳ Hardy inequality
  2. Construct a weak solution $\bu_k=\bu_{\infty,1} + \bv_k$ in the ball $B_k$ such that the sequence $(\bv_k)_{k\geq1}$ is uniformly bounded in $\mathcal{H}$
    a priori bound in bounded domains
    ↳ compactness of the nonlinearity in bounded domains
    ↳ Leray–Schauder fixed point theorem
  3. Pass to the limit in the weak formulation
    ↳ local compactness property of $\mathcal{H}$

Hardy inequality in $\mathbb{R}^3$

Hardy inequality (Hardy, 1934)
For any $\bu\in \dot{H}^1_\sigma$, there exists a unique $\bu_\infty\in\mathbb{R}^3$ such that $$\left\Vert \frac{\bu-\bu_\infty}{|\bx|} \right\Vert_{L^2} \leq 2 \Vert \bnabla\bu \Vert_{L^2}$$ and moreover $\bu-\bu_\infty\in L^6$ and $$\int_{S^2}|\bu-\bu_\infty|^2 = O\left(\frac{1}{|\bx|}\right).$$
Hilbert subspace
The following subspace of $\dot{H}^1_\sigma$ has a nondegenerate norm: $$\mathcal{H} = \bigl\{\bu\in\dot{H}^1_\sigma : \bu_\infty=\bzero\bigr\} = \dot{H}^1_\sigma \cap L^6 \subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$

Hardy inequality in $\mathbb{R}^2$

Hardy inequality (Guillod & Wittwer, 2018)
There exists a constant $C>$ such that for any $\bu\in \dot{H}^1_\sigma$, $$\left\Vert \frac{\bu-\bmu}{\langle\bx\rangle\langle\log\langle\bx\rangle\rangle} \right\Vert_{L^2} \leq C \Vert \bnabla\bu \Vert_{L^2}$$ where $\bmu\in\mathbb{R}^2$ is the mean of $\bu$ on the ball of radius one $$\bmu = \frac{1}{|B_1|}\int_{B_1} \bu \,.$$
Hilbert subspace
The following subspace of $\dot{H}^1_\sigma$ has a nondegenerate norm: $$\mathcal{H} = \bigl\{\bu\in\dot{H}^1_\sigma : \bmu=\bzero\bigr\} \subset H^1_{\mathrm{loc}} \Subset L^4_{\mathrm{loc}}$$

Remark on the hypothesis on $\bff$

Corollary in $\mathbb{R}^3$
In $\mathbb{R}^3$ if $|\bx|\bff \in L^2$, then there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$
Corollary in $\mathbb{R}^2$
In $\mathbb{R}^2$ if $\langle\bx\rangle\langle\log\langle\bx\rangle\rangle\bff \in L^2$ and $$\int_{\mathbb{R}^2}\bff=\bzero$$ then there exists $C>0$ such that $$|\langle\bff,\bphi\rangle_{L^2}| \leq C \Vert\bnabla\bphi\Vert_{L^2} \quad \forall \bphi\in C^\infty_{0,\sigma}$$

Difficulties and problems

Difficulties with $\mathbb{R}^2$ compared to $\mathbb{R}^3$
  1. Hypothesis on $\bff$ implies a vanishing net force: $$\bF = \int_{\mathbb{R}^2} \bff = \bzero $$ ↳ otherwise the a priori bound in $\dot{H}^1$ is not valid.
  2. Subspace $\mathcal{H}$ with $\bu_1=\bzero$ not suitable to study the asymptotic behavior
    ↳ functions are not even bounded.
  3. Use of $\bu_\infty$ on the artificial boundary (as in $\mathbb{R}^3$)
    ↳ hard to get local control
    ↳ hope to obtain something on the asymptotic behavior

Existence of weak solutions (version 2)

Theorem (Guillod, Korobkov & Ren, 2022)
If $\mathrm{supp} \bff \subset B_1$ and $\bff \in H^{-1}(B_2)$, then the solution $\bu_k$ in $B_k$ with $\bu_k|_{\partial B_k}=\bu_\infty$ satisfies: $$\Vert\bnabla\bu_k\Vert^2_{L^2} \leq C A \left(A+|\bu_\infty|+A^{1/3}\right)$$ $$\sup_{1\leq r\leq k} \bar{\bu}_k(r) \leq C \left(A+|\bu_\infty|+A^{1/3}\right)$$ where $\bar{\bu}_k(r)$ denotes the average of $\bu_k$ on $\partial B_r$ and $A=\Vert\bff\Vert_{H^{-1}(B_2)}$.
Corollary
This proves the existence of a weak solution $\bu$ in $\mathbb{R}^2$. We note that the net force might be nonzero.

Limit at infinity in $\mathbb{R}^2$

Theorem (Guillod, Korobkov & Ren, 2022)
Given $\bff$ and $\bu_\infty$, there exists a constant $\varepsilon>0$ such that if: $$\Vert\bff\Vert_{H^{-1}(B_2)} \leq \frac{\varepsilon^2 |\bu_\infty|}{\log^{1/2}(2+|\bu_\infty|^{-1})}$$ or $$\bF=\int_{B_1}\bff=\bzero \quad\text{and}\quad \bu_\infty=\bzero$$ then the constructed weak solution satisfies $$\lim_{\left|\bx\right|\to\infty}\bu = \bu_\infty$$ uniformly.

Ideas of the proof

Remark
In case $\bu_\infty = \bzero$ and $\bF\neq\bzero$ the limit at infinity in open.
This might be related to the Stokes paradox.
Ideas of the proof
  1. For any weak solution in an annulus $A_{r_1,r_2}$, estimate $|\bar{\bu}(r_1)-\bar{\bu}(r_2)|$ in terms of $\Vert\bnabla\bu\Vert_{L^2(A_{r_1,r_2})}$.
  2. Rescale the solution only in space from $B_k$ to $B_1$ in order to obtain the Euler equation in the limit.
  3. Establish properties on the pressure of this Euler system.
  4. Keep the essence of the first estimate in the limit $r_1\to\infty$ with $r_2/r_1\to\infty$.

Perturbative methods

Scaling symmetry

Scaling symmetry
$$\begin{align} \bu(\bx) &\mapsto \bu_\lambda(\bx) = \lambda \bu(\lambda\bx)\\ p(\bx) &\mapsto p_\lambda(\bx) = \lambda^2 p(\lambda\bx)\\ \bff(\bx) &\mapsto \bff_\lambda(\bx) = \lambda^3 \bff(\lambda\bx)\\ \end{align}$$
Remark
The scaling symmetry describes the link
between the linearity and the nonlinearity.

Criticality

Criticality
  • subcritical space
    ↳ linearity dominant
  • critical space
    ↳ linearity and nonlinearity balanced
  • supercritical space
    ↳ nonlinearity dominant
Criticality of a Banach space $X$
$$\Vert \bu_\lambda \Vert_X = \lambda^{1-\alpha} \Vert\bu\Vert_X$$
  • $\alpha<1$ : subcritical locally and supercritical at infinity
  • $\alpha=1$ : critical both locally and at infinity
  • $\alpha>1$ : supercritical locally and subcritical at infinity

Examples of function spaces

Function space for weak solutions
$\dot{H}^1_\sigma$ has $\alpha=\frac{n}{2}-1$, so for $n=2,3$ it is
  • subcritical locally (linearity locally dominant)
    ↳ no regularity problem
  • supercritical at infinity (nonlinearity dominant at infinity)
    a priori no boostrap from weak solutions
Function space for perturbative solutions
$$E_\alpha = \bigl\{ \bu\in L^1_{\mathrm{loc}}: {\textstyle\sup_{\bx\in\mathbb R^n}} (1+|\bx|^{\alpha}) |\bu(\bx)| <\infty \bigr\}$$ is subcritical locally and
  • subcritical at infinity if $\alpha>1$
  • supercritical at infinity if $\alpha<1$

Perturbation method

when $\bu_\infty\neq\bzero$

Linearization around $\bu_\infty\neq\bzero$ (Oseen equations)
$$-\Delta\bu+\bnabla p + \bu_\infty\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$
Theorem (Finn, 1965; Babenko, 1973; Galdi, 1992)
If $\bu$ is a weak solution in $\mathbb{R}^3$ with $\bu_\infty\neq\bzero$, then $\bu$ behaves at infinity like the Oseen fundamental solution.
Theorem (Finn & Smith, 1967; Galdi, 1992)
Let $q\in(1,6/5]$ and $\bu_\infty\neq\bzero$. If $\bff\in L^q$ is small enough, then there exists a solution $\bu$ behaving at infinity like the Oseen fundamental solution.

Net force and decay

when $\bu_\infty=\bzero$

  • Navier–Stokes equivalent to $\bnabla\bcdot\mathbf{T}=\bff$ where $$\mathbf{T}=\bnabla\bu+\left(\bnabla\bu\right)^{T}-p\,\boldsymbol{1}-\bu\otimes\bu$$
  • Invariant quantity $$\int_{B_r}\bff = \int_{\partial B_r}\!\mathbf{T}\bcdot\bn$$
  • Net force $$\bF = \int_{\mathbb{R}^n}\bff = \lim_{r\to\infty}\int_{\partial B_r}\!\mathbf{T}\bcdot\bn = \lim_{|\bx|\to\infty}|\bx|^{n-1}\int_{S^{n-1}}\!\mathbf{T}\bcdot\bn$$
Consequence
If $\bu\in E_\alpha$ with $\alpha>\frac{n-1}{2}$, then $\bF=\bzero$.

Perturbative solutions in $\mathbb{R}^3$

when $\bu_\infty=\bzero$

Landau solution
For $\bF\in\mathbb{R}^3$, the Landau solution $\bU_{\!\bF}$ is an explicit scale-invariant solution of the Navier–Stokes equations with $\bff = \bF \delta(\bx)$.
Theorem (Korolev & Šverák, 2011)
Let $\varepsilon\in(0,1)$. If $\bff\in E_{3+\varepsilon}$ is small enough, then there exists a unique solution $\bu\in E_1$ such that $$\bu = \bU_{\!\bF} + O(|\bx|^{-1-\varepsilon})$$ where $\bF = \int_{\mathbb{R}^3}\bff$. Moreover this solution is unique among weak solutions having $\bu_\infty=\bzero$.

Perturbative solutions in $\mathbb{R}^2$

when $\bu_\infty=\bzero$

Proposition (Guillod & Hillairet, 2015)
For any $\bF\neq\bzero$, there exists an exact solution $$\bU_{\!\bF} = \frac{\bphi(\hat\bx)}{|\bx|^{1/2}} \in E_{1/2}$$ of the Euler equation $$\bnabla p + \bu\bcdot\bnabla\bu = \bff \qquad \bnabla\bcdot\bu=0$$ for $\bff = \bF \delta(\bx)$.
Problem
In Navier–Stokes, the next order correction has necessarily a flux greater than $3\pi$.

Perturbative solutions in $\mathbb{R}^2$

when $\bu_\infty=\bzero$ and $\bF=\bzero$

Tork solution
For $M\in\mathbb{R}$, the tork solution $\bU_{\!M}$ is the scale-invariant solution of the Navier–Stokes equations with tork $M$: $$\bU_{\!M} = \tfrac{M}{4\pi} \bx^\perp |\bx|^{-2} \,.$$
Theorem (Guillod, 2015; Guillod & Wittwer, 2017)
Let $\varepsilon\in(0,1)$. If $\bff\in E_{3+\varepsilon}$ is small enough with $\bF=\bzero$ and belongs to a manifold of codimension two, then there exists a unique solution $\bu\in E_1$ such that $$\bu = \bU_{\!M} + O(|\bx|^{-1-\varepsilon})$$ where $M = \int_{\mathbb{R}^2}\bx\bwedge\bff$. If $M=0$, this solution is unique among the weak solutions having the same $\bmu$.

Some possible asymptotic behaviors

when $\bu_\infty=\bzero$ and $\bF=\bzero$

Idea (Guillod & Wittwer, 2015)
Combine the scaling and rotational symmetries to generalize the concept of scale-invariant solutions: $$e^\lambda\bu(e^\lambda\bx) = \mathbf{R}^{-1}_{\eta\lambda}\bu(\mathbf{R}_{\eta\lambda}\bx)$$ i.e. $$\bu(r,\theta) = \frac{\bphi(\theta + \eta \log r)}{r}$$
generalized scale-invariant generalized scale-invariant

Generalized scale-invariant solutions

for $\eta=\,$ 0.0

$k=2$
$k=3$
$k=4$

Conjectures on the
existence of solutions
in $\mathbb{R}^2$ with $\bu_\infty=\bzero$

Open problems

Open problems when $\bF\neq\bzero$
  • existence of weak solutions with $\bu_\infty=\bzero$
  • existence of perturbative solutions with $\bu_\infty=\bzero$
Open problems when $\bF=\bzero$
  • existence of perturbative solutions if $\bff$ do not satisfies the two compatibility conditions
Question
What is happening without any compatibility conditions on $\bff$, even under smallness assumptions on $\bff$?

Asymptotic expansion when $\bF\neq\bzero$

Theorem (Guillod & Wittwer, 2015)
For any $\bF\neq\bzero$, there exists a solution $\bU_{\!\bF}\in E_{1/3}$ with some $\bff\in E_{7/3}$ having net force $\bF$.

$$\bU_{\!\bF} \sim |\bx|^{-1/3}$$

$$\bU_{\!\bF} \sim |\bx|^{-2/3}$$

asymptotique expansion up to second order

Numerical simulations when $\bF\neq\bzero$

  • Take some $\bff$ having compact support and $\bF\neq\bzero$
  • Truncate the domain to a ball of radius $r=10^5$
  • Add zero boundary condition on $\partial B_r$: $\bu|_{\partial B_r}=\bzero$
$|\bx|^{1/3}\,|\bu|$
simulations avec conditions au bord de non-glissement
$|\bx|\,|\bu-\bU_{\!\bF}|$
difference between numerical solution and asymptote

Conjecture when $\bF\neq\bzero$

Conjecture (Guillod & Wittwer, 2015)
For a large class of small $\bff$ with $\bF\neq\bzero$, there exists a solutions to the Navier–Stokes equations such that $$\bu = \bU_{\!\bF} + O(|\bx|^{-1}).$$
Main problem
How to invert the linear system $$-\Delta\bu+\bnabla p+\bU_{\!\bF}\bcdot\bnabla\bu+\bu\bcdot\bnabla\bU_{\!\bF}=\bff \qquad \bnabla\bcdot\bu=\bzero$$ since $\bU_{\!\bF}$ decays only like $|\bx|^{-1/3}$?

Numerical simulations when $\bF=\bzero$

Solution of the linear equations
Up to a rotation around the origin, the asymptotic expansion of the Stokes solution is: $$ \bu = \bU_{\! M} + \bU_{\! A,0} + O(|\bx|^{-2})$$ where $$M = \int_{\mathbb{R}^2} x_1 f_2 - x_2 f_1 \quad\text{and}\quad A = \int_{\mathbb{R}^2} x_1 f_1 - x_2 f_2$$
Choice of forcing
Take the simplest forcing $\bff$ generating $M$ and $A$: $$\bff = \frac{M}{\pi} (-x_2,x_1) \, \e^{-|\bx|^2} + \frac{A}{\pi} (x_1,-x_2) \, \e^{-|\bx|^2}$$

Numerical simulations when $\bF=\bzero$

for $M=\,$ 0.0$\pi$ and $A=\,$ 0.0$\pi$

decay of the velocity for zero net force virtual pointer
$A$
$M$
$\bu\sim|\bx|^-$0.00
velocity for zero net force
$|\bx|$0.00$\quad|\bu|$

Summary for $\bu_{\infty}=\bzero$

$n=2$$n=3$
$\bF\neq\bzero$$\bF=\bzero$$\bF\neq\bzero$$\bF=\bzero$
Stokes solutions$\log|\bx|$$|\bx|^{-1}$$|\bx|^{-1}$$|\bx|^{-2}$
Navier–Stokes solutions$\color{red}{|\bx|^{-1/3}}$$\color{red}{|\bx|^{-1/3}}$$\color{yellow}{|\bx|^{-1}}$$\color{green}{|\bx|^{-2}}$
Asymptotic behaviorsingle wake?double wake, spirals,...?Landau solutionStokes solution
Conclusion
In $\mathbb{R}^2$ the nonlinearity “helps” for the existence!