

Velocity field at infinity:
$$\bu_\infty \in \mathbb{R}^n$$Net force:
$$\bF = \int_{\mathbb{R}^n} \bff \in \mathbb{R}^n$$$$\int_{\mathbb{R}^n} \bnabla\bu:\bnabla\bu + \underbrace{\int_{\mathbb{R}^n} (\bu\bcdot\bnabla\bu)\bcdot\bu}_{=\,0} = \int_{\mathbb{R}^n} \bff\bcdot\bu$$ $$\implies \Vert\bnabla\bu\Vert_{L^2}^2 = \langle\bff,\bu\rangle_{L^2}$$
$$\forall\bphi\in C^\infty_{0,\sigma}=\bigl\{\bphi\in C^{\infty}_0: \bnabla\bcdot\bphi=0 \bigr\}$$
| $$\bu_\infty\neq\bzero$$ | $$\begin{align} \bu_\infty &= \bzero\\ \bF &\neq \bzero \end{align}$$ | $$\begin{align} \bu_\infty &= \bzero\\ \bF &= \bzero \end{align}$$ | |||
| Small data | ∃! | ? | ∃ | ||
| Forcing smaller than $\bu_\infty$ | ∃ | ? | ∃ | ||
| Large data | ? | ? | ∃ |