Theorem (Gancedo, Granero-Belinchón & Salguero, 2022)
For $3/2 < m < 2$, there exists $\varepsilon_0>0$ small such that for any $\zeta_0\in H^3(\mathbb{T})$ with $\|\zeta_0\|_{H^3}\leq\varepsilon_0$,
the solution of (ST) in $\mathbb{T}\times\mathbb{R}$ with $\rho_0(x,z)=\mathbf{1}_{\{z<\zeta_0(x)\}}$ is given by
$\rho(t,x,z)=\mathbf{1}_{\{z<\zeta(t,x)\}}$ where:
$$\|\zeta-\bar\zeta_0\|_{L^2} \lesssim \frac{\varepsilon_0}{1+t^m}, \qquad \|\zeta-\bar\zeta_0\|_{H^3} \lesssim \varepsilon_0.$$