Sedimentation of buoyancy-driven flow

Julien Guillod

joint work with Anne-Laure Dalibard and Antoine Leblond

logo SU ENS INRIA

1. Introduction

Problem

Question
Stability of stratified flow and long-time behavior?

Motivation from oceanography

Lock exchange test case

Variables and domain

  • Horizontal variable $x$ and vertical variable $z$
  • Velocity field $\bu$ and density $\rho$
  • Reynolds number $\mathrm{Re}$
  • Periodic channel $\Omega=\mathbb{T}\times(0,1)$

Description of the model

  • Boussinesq approximation $$\mathrm{Re}\bigl(\partial_{t}\bu+\bu\bcdot\bnabla\bu\bigr)-\Delta u+\bnabla p=-\rho\be_z$$
  • Incompressible fluid $$\bnabla\bcdot\bu =0$$
  • Pure transport of the density $$\partial_{t}\rho+\bu\bcdot\bnabla\rho=0$$
  • Dirichlet boudnary conditions $$\bu|_{\partial\Omega}=\bzero$$

A priori estimates

  • Potential energy $$E(\rho)=\int_{\Omega}z\rho$$
  • From transport equation $$\frac{\mathrm{d}}{\mathrm{d}t}E(\rho)=\int_{\Omega}z\partial_{t}\rho=-\int_{\Omega}z\bnabla\bcdot(\rho\bu)=\int_{\Omega}\rho\bu\bcdot\be_{z}$$
  • From velocity equation $$\frac{\mathrm{Re}}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\bu\|_{L^2}^{2}=-\|\bnabla\bu\|_{L^2}^2-\int_{\Omega}\rho\bu\bcdot\be_{z}$$
  • Energy balance $$\frac{\mathrm{d}}{\mathrm{d}t}\biggl(\frac{\mathrm{Re}}{2}\|\bu\|_{L^2}^{2}+E(\rho)\biggr)=-\|\bnabla\bu\|_{L^2}^2$$

Steady states

Proposition
Steady states are precisely stratified density profiles, i.e density profiles depending only on the vertical variable $z$.
Sketch of the proof
  • From energy estimate $\|\bnabla\bu\|_{L^2}=0$, hence $\bu=\bzero$.
  • Hence velocity equation reduces to $$\bnabla p=-\rho\be_{z}$$ so the pressure is independent of $x$, hence $\rho$ too.
Difficulty
Continuum of steady states, hence asymptotic stability is not expected to hold → slightly modified stratified profile.

Stokes-transport problem

  • Neglecting the inertia of the fluid i.e. taking $\mathrm{Re}=0$: $$\tag{ST}\left\{\begin{aligned} \partial_{t}\rho+\bu\bcdot\bnabla\rho &=0\\ -\Delta\bu+\bnabla p &=-\rho\be_z\\ \bnabla\bcdot\bu &=0\\ \bu|_{\partial\Omega} &=\bzero\\ \rho|_{t=0} &= \rho_0 \end{aligned}\right.$$
  • Valid for very viscous fluids
  • Limit of infinitely many spherical solid particles sedimenting in a fluid (Höfer, Mecherbet, 2018)
  • Simplification that keeps most of the interesting behavior
  • Boussinessq ($\mathrm{Re}>0$) is a perturbation of Stokes ($\mathrm{Re}=0$) in the long-time limit (Park, 2024)

Global well-posedness

Theorem (Leblond, 2021, 2023)
Let $q\in(2,\infty]$. For any $\rho_{0}\in L^q$, (ST) has a unique solution $$\rho\in L^{\infty}(\mathbb{R},L^{q}), \qquad \bu\in L^{\infty}(\mathbb{R},W^{1,\infty}).$$ Existence still holds for $q>1$.
Previous results
  • For patches: Antontsev, Meirmanov & Yurinsky (2000)
  • In $\mathbb{R}^3$: Höfer (2018), Mecherbet (2018), Höfer & Schubert (2021), Mecherbet & Sueur (2022), Inversi (2023)

Sketch of the proof

  • Stokes bounds: $$\begin{align*} \|\bu\|_{W^{1,q}} &\lesssim \|\rho\|_{W^{-1,q}}\\ \|\bu\|_{W^{1,\infty}} \lesssim \|\bu\|_{W^{2,q}} &\lesssim \|\rho\|_{L^{q}} \end{align*}$$
  • Method of characteristics, $\rho$ is the push-forward of $\rho_0$: $$\rho(t) = \rho_{0}\circ\mathbf{X}(-t)$$
  • Stability estimate: $$\|\rho_1-\rho_2\|_{L^{\infty}_{T}W^{-1,q}} \lesssim \|\rho_{0}\|_{L^\infty}Te^{CKT}\|\bu_{1}-\bu_{2}\|_{L^{\infty}_{T}L^{q}}$$ where $$K=\|\bnabla\bu_1\|_{L^{\infty}_{T}L^{\infty}}$$
  • Global solution by using the conservation of the $L^q$-norm

2. Stability of
continuous
density profiles

Stability of $\Theta(z)=1-z$

Theorem (Dalibard, Guillod & Leblond, 2024)
There exists $\varepsilon_0 >0$ small such that for any $\rho_0 \in H^6$ satisfying $\|\rho_0-\Theta\|_{H^6} \leq \epsilon_0$ and $\rho_0-\Theta\in H^2_0$, the solution of (ST) satisfies: $$\begin{align*} \|\rho-\rho_\infty\|_{L^2(\Omega)} &\lesssim \frac{\varepsilon_0}{1+t},& \|\rho-\rho_\infty\|_{H^4(\Omega)} \lesssim \varepsilon_0, \end{align*}$$ for some $\rho_\infty$ depending only on $z$.
Remarks
  • The perturbation need to vanish near the boundary.
  • Can be generalized to other profiles $\Theta(z)$ provided: $$\sup_{(0,1)}\partial_{z}\Theta<0$$

Identification of the limit

Corollary (Dalibard, Guillod & Leblond, 2024)
The long-time asymptotic $\rho_\infty$ is given by the decreasing vertical rearrangement of $\rho_0$: $$\rho_\infty(z) = \rho_0^*(z) := \int_0^\infty \boldsymbol{1}_{0 \leq z \leq |\{\rho_0>\lambda\}|}\mathrm{d}\lambda.$$
Sketch of the proof
  • $\rho_\infty$ depends only on $z$
  • $\rho_\infty$ is strictly decreasing as a perturbation of $\Theta$
  • levels sets of $\rho$ are preserved by the time evolution, so $\rho_\infty$ is a rearrangement of $\rho_0$
  • unique decreasing vertical rearrangement

Strategy of proof

Rewriting

  • Perturbation $\theta$: $$\rho = \Theta + \theta$$
  • Decomposition into horizontal average and complement: $$\theta = \bar\theta + \theta' \qquad \bar\theta = \frac{1}{2\pi}\int_0^{2\pi}\theta \, \mathrm{d}x$$
  • In these variables and using vorticity formulation: $$\left\{ \begin{aligned} \partial_t\theta' + (\bu\cdot\nabla\theta')' &= (1-\partial_z\bar\theta)u_2 & \theta'|_{t=0} &= \theta'_0 \\ \partial_t\bar\theta + \overline{\bu\cdot\nabla\theta'} &= 0 & \bar\theta|_{t=0} &= \bar\theta_0 \\ \Delta^2\psi &= \partial_x\theta' & \psi|_{\partial\Omega} &= 0 \\ \bu &= \nabla^\perp\psi & \partial_\bn\psi|_{\partial\Omega} &= 0 \\ \end{aligned} \right.$$

Strategy of proof

Dominant terms & Bootstrap

As $t\to\infty$, one expect that $\bar\theta\to\rho_\infty-\Theta$ and $\theta'\to0$,
thus the dominant part is $$\left\{ \begin{aligned} \partial_t\theta' &= (1-\partial_z\bar\theta)\partial_{x}\psi & \theta'|_{t=0} &= \theta'_0 \\ \Delta^2\psi &= \partial_x\theta' & \psi|_{\partial\Omega} &= \partial_\bn\psi|_{\partial\Omega} = 0 \end{aligned} \right.$$
Main steps
  1. Analysis when $\partial_z\bar\theta$ is small and given:
    1. Uniform bounds of $\|\Delta^{s/2}\theta'\|_{L^2}$ for $s=0,4$
    2. Decay of $\|\theta'\|_{L^2}$
  2. Bootstrap argument

Step 1. Uniform $H^s$ bounds

$$\partial_t\theta' = (1-\partial_z\bar\theta)\partial_{x}\psi \qquad \Delta^2\psi=\partial_x\theta'$$
  • In the torus $\mathbb{T}^2$ for any $s$: $$\begin{align} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\Delta^{s/2}\theta'\|_{L^2}^2 &= - \int\Delta^{s/2}((1-\partial_z\bar\theta)\psi) \Delta^{s/2+2}\psi \\ &= - \int\Delta^{s/2+1}((1-\partial_z\bar\theta)\psi) \Delta^{s/2+1}\psi \\ &\leq -(1-\bar C \|\partial_z\bar\theta\|_{H^{s+2}}) \|\Delta^{s/2+1}\psi\|_{L^2} \end{align}$$
  • In $\Omega=\mathbb{T}\times(0,1)$ with Dirichlet boundary conditions:
    • if $\partial_z\bar\theta=0$, works only for $s=0$ and $s=4$
      because only the following traces are zero: $$\psi|_{\partial\Omega} \quad \partial_z\psi|_{\partial\Omega} \quad \Delta^2\psi|_{\partial\Omega} \quad \partial_z\Delta^2\psi|_{\partial\Omega}$$
    • if $\partial_z\bar\theta\neq0$, some boundary terms remain for $s=4$

Step 2. Decay of $\|\theta'\|_{L^2}$

  • Gagliardo–Nirenberg interpolation: $$\|\partial_{x}^{-1}\Delta^{2}\psi\|_{L^{2}}^2\lesssim \frac1{K}\|\Delta\psi\|_{L^{2}}^2+K^{2}\|\partial_{x}^{-3}\Delta^{4}\psi\|_{L^{2}}^2$$
  • Energy inequality: $$\frac{\mathrm{d}}{\mathrm{d}t} \|\theta'\|_{L^{2}}^{2} \lesssim-\|\Delta\psi\|_{L^{2}}^{2} \lesssim K^{3}\|\partial_{x}^{-3}\Delta^{4}\psi\|_{L^{2}}^{2}-K\|\partial_{x}^{-1}\Delta^{2}\psi\|_{L^{2}}^{2}$$
  • Taking $K \simeq (1+t)^{-1}$ and since $\Delta^2\psi = \partial_x\theta'$: $$\frac{\mathrm{d}}{\mathrm{d}t} \|\theta'\|_{L^{2}}^{2} + \frac{3}{1+t} \|\theta'\|_{L^{2}}^{2} \lesssim \frac{1}{(1+t)^3} \|\partial_{x}^{-2}\Delta^{2}\theta'\|_{L^{2}}^{2}$$
  • Uniform $H^4$ bound: $$\|\Delta^{2}\partial_{x}^{-2}\theta'\|_{L^{2}}^{2} \lesssim \|\Delta^{2}\theta'\|_{L^{2}}^{2} \leq \|\theta'_0\|_{H^4}$$
  • Gronwall: $$\|\theta'\|_{L^{2}} \lesssim \frac{\|\theta'_0\|_{H^4}}{1+t}.$$

Comparison with IPM

incompressible porous media

  • IPM: Stokes replaced by Darcy $$\bu + \bnabla p = -\rho\be_z \qquad \bu\bcdot\bn=0$$
  • No global well-posedness for IPM
  • Similar stability result for IPM by Elgindi (2017) in $\mathbb{R}^2$ and $\mathbb{T}^2$
  • Adapted by Castro, Córdoba & Lear (2019) to $\mathbb{T}\times(0,1)$
    ⤷ even traces $\partial_z^{2n}\rho_0|_{\Omega}$ need to vanish (preserved by the evolution)
    ⤷ almost no problem with integrations by part, like in $\mathbb{T}^2$

Nonlinear instability

Theorem (Leblond, 2023), adapted from Kiselev-Yao (2023)
Let $\Theta\in C^\infty$ be a stationary solution for (ST). For any $\varepsilon>0$ and $0<\gamma<2$, there exists $\rho_0\in C^\infty$ satisfying $\|\rho_0-\Theta\|_{H^{2-\gamma}}\leq\varepsilon$ such that: $$\limsup_{t\to\infty} t^{-s/4} \|\rho(t)-\Theta\|_{\dot{H}^s} = \infty$$ for all $s>0$.
Stability threashold
Stability in $H^4$ and unstability in $H^{2-}$, so Sobolev regularity threashold inbetween?

Asymptotic expansion

Theorem (Dalibard, Guillod & Leblond, 2024)
There exists $\varepsilon_0 >0$ small such that for any $\rho_0 \in H^{14}$ satisfying $\|\rho_0-\Theta\|_{H^{14}} \leq \varepsilon_0$ and $\rho_0 - \Theta\in H^2_0$, then the solution of (ST) satisfies: \begin{align} \rho = \rho_\infty + \rho_\BL + O(t^{-2}) \quad \text{in} \quad L^2 \quad \text{as} \quad t\to\infty, \end{align} where $\rho_\BL$ is the boundary layer part: \begin{equation} \rho_\BL = \frac{1}{t}\Theta_\mtop(x,t^{1/4}(1-z)) + \frac{1}{t}\Theta_\mbot(x,t^{1/4}z) + \text{l.o.t.} \end{equation} with $\Theta_\mtop$ and $\Theta_\mbot$ decaying exponentially in the second variable.

Remarks on the asymptotic expansion

  • Optimal decay of $\|\rho-\rho_\infty\|_{L^2}$ like $t^{-9/8}$ since $$\|\rho_\BL\|_{L^2} \sim (1+t)^{-9/8}$$
  • Boundary layer terms solves linear equations
  • If the perturbation do not vanish near the boundary:
    • lower order boundary layers present to lift these traces
    • main order will be solution of a non-linear equation
    • most probably way more technical

What is happening in general?

Proposition (Leblond, 2023)
For $\rho_0\in L^\infty$, let denote by $\rho_0^*$ the decreasing vertical rearrangement of $\rho_0$, and by $\rho$ the solution of (ST).
  1. The potential energy $E(t)$ converges to some $E_\infty\geq E(\rho_0^*)$.
  2. The $\omega$-limit set $$\omega_{H^{-1}} := \bigcap_{t\geq0} \overline{\{\rho(\tau):\tau\geq t\}}^{H^{-1}}$$ is non-empty.
  3. Any $\rho_\infty\in\omega_{H^{-1}}$ is a stratified rearrangment of $\rho_0$ and $E(\rho_\infty) = E_\infty$.
  4. If $E_\infty=E(\rho_0^*)$, then $\omega_{H^{-1}} = \{\rho_0^*\}$ and $\rho(t)$ converges to $\rho_0^*$ in $H^{-1}$.

What can go wrong?

3. Stability of the interface problem

Stability of the constant interface

Theorem (Gancedo, Granero-Belinchón & Salguero, 2023)
There exists $\varepsilon_0>0$ small such that for any $h_0\in H^3(\mathbb{T})$ with $\|h_0\|_{H^3}\leq\varepsilon_0$, the solution of (ST) in $\mathbb{T}\times\mathbb{R}$ with $\rho_0(x,z)=\mathbf{1}_{\{z<h_0(x)\}}$ is given by $\rho(t,x,z)=\mathbf{1}_{\{z<h(t,x)\}}$ where: $$\|h-\bar h_0\|_{L^2} \lesssim \frac{\varepsilon_0}{1+t^2}, \qquad \|h-\bar h_0\|_{H^3} \lesssim \varepsilon_0.$$

Numerical results

Influence of the boundary

$\|\zeta\|_{\dot{H}^2}$ ↘
$\|\zeta\|_{\dot{H}^2}$ ⤳

Numerical results

$\dot{H}^1$ and length not Lyapunov

$\|\zeta\|_{\dot{H}^1}$ ↘
$\|\zeta\|_{\dot{H}^1}$ ↗
length ⤳

Numerical results

Graph breaking

Numerical obervations
  • Length of the interface can grow
  • Graph nature can break