Quantum Mechanics I, Sheet 2, Spring 2013

March 6, 2013 (EP, Auditoire Stuckelberg)

Prof. D. van der Marel (dirk.vandermarel@unige.ch)
Tutorials: P. Barmettler (peter.barmettler@unige.ch), P. Guarato (pietro.guarato@unige.ch)

I. DE BROGLIE WAVELENGTHS

On sufficiently small length scales, particles exhibit wave-like properties and their wavelength named after de Broglie is given by $\lambda = h/p$ where p is the momentum of the particle. The momentum is related to the kinetic energy via $E_{kin} = E - E_{p=0} = \sqrt{(p_e c)^2 + (m_e c^2)^2} - m_e c^2$, where m_e is the mass and p_e the momentum of the electron. Calculate λ for

- (i) an electron whose kinetic energy is 500 KeV (use the relativistic expression for the energy of the electron),
- (ii) an electron whose kinetic energy is 30 eV (use the non-relativistic expression for the energy of the electron).

II. A SIMPLE WAVE FUNCTION

We consider an exponentially decaying wave function, defined on a domain $0 \le r < \infty$,

$$\psi(r) = Ne^{-\frac{r}{2a}}$$

where N is a normalization factor and a is a known real parameter. Such type of wave function describes for example a particle penetrating into a strong potential well.

- a. Calculate the factor N.
- b. Calculate the expectation values $\langle r \rangle$ and $\langle r^2 \rangle$ of this state.
- c. Calculate the probability of finding the particle in the region $r > \langle r \rangle$.
- d. Calculate the momentum-space representation of the symmetrized wave function $\varphi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dr e^{-ipr/\hbar} \psi(|r|)$.

For this exercise we suggest that you explicitly perform the partial integrations. But you can use the following integral to check your results:

$$\int_{\bar{x}}^{+\infty} \mathrm{d}x x^n e^{-x} = \left[(-1)^n \frac{\mathrm{d}^n}{\mathrm{d}\alpha^n} \int_{\bar{x}}^{+\infty} \mathrm{d}x e^{-\alpha x} \right]_{\alpha=1},$$

which, in the case $\bar{x} = 0$, reduces to

$$\int_0^{+\infty} \mathrm{d} x x^n e^{-x} = \Gamma(n+1) = n!,$$

where Γ is the gamma function.

III. SCHROEDINGER EQUATION IN MOMENTUM SPACE

A particle of mass m is subjected to a one-dimensional potential V(x) such that the Fourier transform of the wave function $\varphi(p,t)=\frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^{\infty}dx e^{-ipx/\hbar}\psi(x,t)$ satisfies a momentum-space Schroedinger equation given by

$$\left(\frac{p^2}{2m} - \frac{\kappa\hbar^2}{2} \frac{\partial^2}{\partial p^2}\right) \varphi(p, t) = i\hbar \frac{\partial \varphi(p, t)}{\partial t},\tag{1}$$

where κ is some real constant with suitable physical dimensions. By using Fourier transform, extract the potential V(x) and the corresponding force. What is the physical meaning of κ ?