Quantum Mechanics I, Sheet 6, Spring 2013

Responsible for this sheet: P. Barmettler (peter.barmettler@unige.ch), office xx, EP

April 10, 2013 (EP, Auditoire Stuckelberg)

Prof. D. van der Marel (dirk.vandermarel@unige.ch)

Tutorials: P. Barmettler (peter.barmettler@unige.ch), P. Guarato (pietro.guarato@unige.ch)

I. HERMITIAN AND UNITARY OPERATORS

Let \hat{A} be a linear operator. The conjugate operator \hat{A}^{\dagger} is defined by the relation

$$\langle \phi | \hat{A} | \psi \rangle = \left(\langle \psi | \hat{A}^\dagger | \phi \rangle \right)^* \,,$$

which holds for arbitrary states $|\phi\rangle$ and $|\psi\rangle$. An operator which fulfills $\hat{A}^{\dagger} = \hat{A}$, is called *hermitian* and can represent an observable. An operator is *unitary* if $\hat{U}\hat{U}^{\dagger} = \hat{U}^{\dagger}\hat{U} = \hat{1}$. Based on these properties, proof the following statements:

- a. The eigenvalues of a hermitian operator are real.
- b. States corresponding to different eigenvalues of a hermitian operator must be orthogonal.
- c. The absolute values of the eigenvalues of a unitary operator must be normalized.

II. MEASUREMENTS

Consider a three-state system which is initially in the quantum superposition state $|\psi\rangle = \sum_{n=1}^{3} a_n |n\rangle$, where a_n are complex numbers and the states $|n\rangle$ (n=1,2,3) form an orthonormal basis set of this three-dimensional Hilbert space. Such quantum mechanical system can describe for example the position of an atom in a 'triple-well' or three spectral levels of an atom. Let us introduce a 'parity' operator \hat{S} which is defined by the relation $\hat{S}|n\rangle = (-1)^n |n\rangle$. Obviously the eigenvalues of this operator are $\lambda_+ = 1$ and $\lambda_- = -1$. It is important to note that the eigenvalue λ_- is twofold degenerate.

- a. Write down the projection operators for the different outcomes of the measurements by the observable \hat{S} .
- b. Which is the probability of measuring parity 1, and which is the one for measuring parity -1.
- c. Give the wave function after the having observed the different values of the parity operator.

III. TIME EVOLUTION

- a. Let \hat{H} be a Hamiltonian with eigenvalues E_n and eigenstates $|n\rangle$. This means it exists a unitary transformation such that $\hat{H} = \hat{U}\hat{D}\hat{U}^{\dagger}$ with $\langle n|\hat{D}|n'\rangle = E_n\delta_{n,n'}$. Using the series expansion of exponential and the unitarity of \hat{U} , proof the following expression: $e^{-i\hat{H}t/\hbar} = \hat{U}e^{-i\hat{D}t/\hbar}U^{\dagger}$ with $\langle n|e^{-i\hat{D}t/\hbar}|n'\rangle = e^{-iE_nt/\hbar}\delta_{n,n'}$.
- b. Show that if \hat{H} is hermitian $e^{-i\hat{H}t/\hbar}$ is unitary. Use this result to show that time evolution in quantum mechanics is reversible.
- c. (* Optional, requires a trick) Show that $e^{-i(\hat{H}_A+\hat{H}_B)t/\hbar}=e^{-i\hat{H}_At/\hbar}e^{-i\hat{H}_Bt/\hbar}e^{[\hat{H}_A,\hat{H}_B](\frac{t}{\hbar})^2/2}$ if $[\hat{H}_A,[\hat{H}_A,\hat{H}_B]]=[\hat{H}_B,[\hat{H}_A,\hat{H}_B]]=0$. This means that the exponential of a sum of operators does not factorize if the operators do not commute. In the present case, the 3rd order commutators of the operators vanish, therefore we can obtain a closed expression for the exponential. It is important to note that this is not true in general.