Quantum Mechanics I, Sheet 7, Spring 2013

Responsible for this sheet: J. Guillod (julien.guillod@unige.ch), office 212, Sciences I

April 24, 2013 (Ecole de Physique, Auditoire Stückelberg)

Prof. D. van der Marel (dirk.vandermarel@unige.ch)
Tutorials: J. Guillod (julien.guillod@unige.ch), O. E. Peil (oleg.peil@unige.ch)

Exercises starting with (*) are optional.

I. (*) FUNCTIONAL CALCULUS AND GENERALIZED COMMUTATORS

Consider an analytic function $F: \mathbb{C} \to \mathbb{C}$ so that

$$F(x) = \sum_{n=0}^{\infty} f_n x^n.$$

The function $F(\hat{A})$ of an operator \hat{A} is then defined as

$$F(\hat{A}) = \sum_{n=0}^{\infty} f_n \hat{A}^n.$$

- 1. Let $|\psi\rangle$ be an eigenvector of \hat{A} with eigenvalue a. Prove that $|\psi\rangle$ is an eigenvector of $F(\hat{A})$ with eigenvalue F(a).
- 2. If $[\hat{B}, \hat{A}] = 0$, we directly obtain that $[\hat{B}, F(\hat{A})] = 0$. Prove by induction that if $[\hat{B}, \hat{A}] \neq 0$, but $[[\hat{B}, \hat{A}], \hat{A}] = 0$ then

$$\left[\hat{B}, \hat{A}^n\right] = n\left[\hat{B}, \hat{A}\right] \hat{A}^{n-1},$$

and deduce the relation

$$[\hat{B}, F(\hat{A})] = [\hat{B}, \hat{A}]F'(\hat{A}).$$

3. Since $[\hat{X}, \hat{P}] = i\hbar$, deduce the explicit expression of the commutators $[\hat{X}, T(\hat{P})]$ and $[\hat{P}, V(\hat{X})]$.

II. EHRENFEST THEOREM AND HAMILTON'S EQUATIONS

In this exercise we consider a particle in three dimensions in a potential V, and the aim is to link and see the differences between classical and quantum mechanics. The classical Hamiltonian is

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m} + V(\mathbf{q}) \,,$$

where $\mathbf{p} = (p_1, p_2, p_3)$ and $\mathbf{q} = (q_1, q_2, q_3)$ are the generalized coordinates. The quantum Hamiltonian is

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + V(\hat{\mathbf{q}}) \,,$$

where $\hat{\mathbf{p}} = (\hat{p}_1, \hat{p}_2, \hat{p}_3)$ and $\hat{\mathbf{q}} = (\hat{q}_1, \hat{q}_2, \hat{q}_3)$ are the momentum and position operators.

A. Poisson brackets and commutators

The Poisson bracket of two classical observables is defined as

$$\{A, B\} = \sum_{i=1}^{3} \left(\frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial q_i} \right) ,$$

and the commutator between two quantum observables by

$$\left[\hat{A}, \hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A}.$$

1. Prove that the classical observables satisfy

$$\{q_i, q_j\} = 0,$$
 $\{p_i, p_j\} = 0,$ $\{q_i, p_j\} = \delta_{ij}.$

2. By using the representation where

$$\hat{q}_i \psi(\mathbf{q}) = q_i \psi(\mathbf{q}),$$
 $\hat{p}_i \psi(\mathbf{q}) = -i\hbar \frac{\partial}{\partial q_i} \psi(\mathbf{q}),$

show that

$$\left[\hat{q}_i,\hat{q}_j\right]=0\,,\qquad \qquad \left[\hat{p}_i,\hat{p}_j\right]=0\,,\qquad \qquad \left[\hat{q}_i,\hat{p}_j\right]=\mathrm{i}\hbar\delta_{ij}\,.$$

B. Ehrenfest theorem

1. By using Hamilton's equations

$$\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i},$$

show that the evolution of a classical observable $A = F(\mathbf{q}, \mathbf{p}, t)$ is given by

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\partial A}{\partial t} + \{A, \mathcal{H}\} \ .$$

2. For an quantum observable \hat{A} evolving under the action of the Hamiltonian \hat{H} , prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{A} \rangle = \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle + \frac{1}{\mathrm{i}\hbar} \left\langle \left[\hat{A}, \hat{H} \right] \right\rangle.$$

C. Hamilton's equations

1. Deduce the quantum evolution equation of $\langle \hat{\mathbf{q}} \rangle$ and $\langle \hat{\mathbf{p}} \rangle$ and compare to the corresponding Hamilton's equations.

Hint: Use the following relation derived in the first exercise

$$\left[\hat{\mathbf{p}}, V(\hat{\mathbf{q}})\right] = -i\hbar\nabla V(\hat{\mathbf{q}}).$$

]

2. If the potential V is quadratic, prove that the quantum-classical correspondence

$$\langle \hat{\mathbf{q}} \rangle \leftrightarrow \mathbf{q}$$
, $\langle \hat{\mathbf{p}} \rangle \leftrightarrow \mathbf{p}$,

provides an exact analogy. Understand why this is not true for a generic potential.

III. EVOLUTION OPERATOR

The time-evolution of a quantum state $|\psi(t)\rangle \in \mathcal{E}$ where \mathcal{E} is an Hilbert space is given by the Schrödinger equation

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = \hat{H}(t)|\psi(t)\rangle\,,$$

where $\hat{H}(t) = \hat{H}(t)^{\dagger}$ is the Hamiltonian of the system.

- 1. Show that the operator $\hat{U}(t): \mathcal{E} \to \mathcal{E}$ defined as $\hat{U}(t)|\psi(0)\rangle = |\psi(t)\rangle$ is linear. The operator $\hat{U}(t)$ defined that way is called the evolution operator.
- 2. Check that the evolution operator satisfies the following differential equation

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\hat{U}(t) = \hat{H}(t)\hat{U}(t)\,, \qquad \qquad \hat{U}(0) = \hat{I}.$$

This equation also defines the evolution operator uniquely.

3. (*) Prove that the evolution operator $\hat{U}(t)$ is unitary.

Hint: Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\hat{U}(t)^{\dagger} \hat{U}(t) \right) = 0.$$

]

4. In particular, if the Hamiltonian is time-independent, show that the evolution operator is explicitly given by

$$\hat{U}(t) = e^{-i\hat{H}t/\hbar}$$
.

5. (*) Can you explain, why if $\hat{H}(t)$ is time-dependent, the evolution operator is not given by

$$\exp\left\{\frac{-\mathrm{i}}{\hbar}\int_0^t \hat{H}(s)\,\mathrm{d}s\right\}\,,$$

as for an ordinary differential equation?